计算机基础知识
  • 关于
  • 系统
    • 操作系统的概念、功能、目标
    • 操作系统的特征
    • 并发和并行的区别
    • 操作系统的发展与分类
    • 操作系统的运行机制和体系结构
    • 中断和异常
    • 用户态、核心态之间的切换是怎么实现的?
    • 系统调用
    • 进程的概念
    • 进程的状态和转换
    • 进程控制
    • 进程通信
    • 线程、多线程模型
    • 程序、进程和作业的关系
    • 处理机调度的概念、层次
    • 进程调度的时机、切换与过程、方式
    • 调度算法的评价指标
    • 批处理系统的调度算法
    • 交互式系统的调度算法
    • 进程同步与进程互斥
    • 进程互斥的软件实现方法
    • 进程互斥的硬件实现方法
    • 信号量机制
    • 用信号量机制实现进程互斥、同步、前驱关系
    • 生产者-消费者问题
    • 多生产者-多消费者问题
    • 吸烟者问题
    • 读者-写者问题
    • 哲学家进餐问题
    • 管程
    • 死锁的概念
    • 死锁的处理策略——预防死锁
    • 死锁的处理策略——避免死锁
    • 死锁的处理策略——检测和解除
  • 网络
    • 计算机网络的概念、组成、功能、分类
    • 标准化工作及相关组织
    • 性能指标之速率、带宽、吞吐量
    • 性能指标之时延、时延带宽积、往返时间RTT、利用率
    • 分层结构
    • OSI参考模型
    • TCP/IP参考模型
    • 5层参考模型
    • http与https的区别
    • TCP和UDP的区别
  • Java
    • Arraylist与LinkedList区别
    • HashMap,HashTable,ConcurrentHash的共同点和区别
  • 数据库
    • 为什么MySQL索引要使用B+树
由 GitBook 提供支持
在本页
  • 什么是线程,为什么引入
  • 引入线程机制后的变化
  • 资源分配、调度
  • 并发性
  • 系统开销
  • 线程的属性
  • 线程的实现
  • 用户级线程
  • 内核级线程
  • 多线程模型
  • 多对一模型
  • 一对一模型
  • 多对多模型
在GitHub上编辑
  1. 系统

线程、多线程模型

什么是线程,为什么引入

还没引入进程之前,系统中各个程序只能串行执行。有的进程可能需要“同时”做很多事,而传统的进程只能串行地执行一系列程序。为此,引 入了“线程”,来增加并发度。

可以把线程理解为“轻量级进程”。

线程是一个基本的CPU执行单元,也是程序执行流的最小单位。

引入线程之后,不仅是进程之间可以并发,进程内的各线程之间也可以并发,从而进一步提升了系统的并发度,使得一个进程内也可以并发处理各种任务(如QQ视频、文字聊天、传文件)

引入线程后,进程只作为除CPU之外的系统资源的分配单元(如打印机、内存地址空间等都是分配给进程的)。

引入线程机制后的变化

资源分配、调度

传统进程机制中,进程是资源分配、调度的基本单位

引入线程后,进程是资源分配的基本单位,线程是调度的基本单位

并发性

传统进程机制中,只能进程间并发

引入线程后,各线程间也能并发,提升了并发度

系统开销

传统的进程间并发,需要切换进程的运行环境,系统开销很大

线程间并发,如果是同一进程内的线程切换,则不需要切换进程环境,系统开销小

引入线程后,并发所带来的系统开销减小

线程的属性

  • 线程是处理机调度的单位

  • 多CPU计算机中,各个线程可占用不同的CPU

  • 每个线程都有一个线程ID、线程控制块(TCB)

  • 线程也有就绪、阻塞、运行三种基本状态

  • 线程几乎不拥有系统资源

  • 同一进程的不同线程间共享进程的资源

  • 由于共享内存地址空间,同一进程中的线程间通信甚至无需系统干到

  • 同一进程中的线程切换,不会引起进程切换

  • 不同进程中的线程切换,会引起进程切换

  • 切换同进程内的线程,系统开销很小

  • 切换进程,系统开销较大

线程的实现

用户级线程

用户级线程由应用程序通过线程库实现。

所有的线程管理工作都由应用程序负责(包括线程切换)

用户级线程中,线程切换可以在用户态下即可完成,无需操作系统干预。

在用户看来,是有多个线程。但是在操作系统内核看来,并意识不到线程的存在。(用户级线程对用户不透明,对操作系统透明)

内核级线程

内核级线程的管理工作由操作系统内核完成。线程调度、切换等工作都由内核负责,因此内核级线程的切换必然需要在核心态下才能完成。

可以这样理解,“内核级线程”就是“从操作系统内核视角看能看到的线程”

多线程模型

在同时支持用户级线程和内核级线程的系统中,由几个用户级线程映射到几个内核级线程的问题引出了“多线程模型”问题。

多对一模型

多个用户及线程映射到一个内核级线程。每个用户进程只对应一个内核级线程。

优点:用户级线程的切换在用户空间即可完成,不需要切换到核心态,线程管理的系统开销小,效率高

缺点:当一个用户级线程被阻塞后,整个进程都会被阻塞,并发度不高。多个线程不可在多核处理机上并行运行

一对一模型

一个用户及线程映射到一个内核级线程。每个用户进程有与用户级线程同数量的内核级线程。

优点:当一个线程被阻塞后,别的线程还可以继续执行,并发能力强。多线程可在多核处理机上并行执行。

缺点:一个用户进程会占用多个内核级线程,线程切换由操作系统内核完成,需要切换到核心态,因此线程管理的成本高,开销大。

多对多模型

n用户及线程映射到m个内核级线程(n >= m)。每个用户进程对应m个内核级线程。

克服了多对一模型并发度不高的缺点,又克服了一对一模型中一个用户进程占用太多内核级线程,开销太大的缺点。

最后更新于2年前