交互式系统的调度算法
时间片轮转(RR, Round-Robin)
公平地、轮流地为各个进程服务,让每个进程在一定时间间隔内都可以得到响应。
按照各进程到达就绪队列的顺序,轮流让各个进程执行一个时间片(如100ms)。若进程未在一个时间片内执行完,则剥夺处理机,将进程重新放到就绪队列队尾重新排队。
用于进程调度(只有作业放入内存建立了相应的进程后,才能被分配处理机时间片)
若进程未能在时间片内运行完,将被强行剥夺处理机使用权,因此时间片轮转调度算法属于抢占式的算法。由时钟装置发出时钟中断来通知CPU时间片已到。
优点:公平;响应快,适用于分时操作系统;
缺点:由于高频率的进程切换,因此有一定开销;不区分任务的紧急程度。
不会导致饥饿
如果时间片太大,使得每个进程都可以在一个时间片内就完成,则时间片轮转调度算法退化为先来先服务调度算法,并且会增大进程响应时间。因此时间片不能太大。另一方面,进程调度、切换是有时间代价的(保存、恢复运行环境),因此如果时间片太小,会导致进程切换过于频繁,系统会花大量的时间来处理进程切换,从而导致实际用于进程执行的时间比例减少。可见时间片也不能太小。
优先级调度算法
随着计算机的发展,特别是实时操作系统的出现,越来越多的应用场景需要根据任务的紧急程度来决定处理顺序。
调度时选择优先级最高的作业/进程。
既可用于作业调度,也可用于进程调度。甚至,还会用于在I/O调度中。
抢占式、非抢占式都有。区别在于:非抢占式只需在进程主动放弃处理机时进行调度即可,而抢占式还需在就绪队列变化时,检查是否会发生抢占。
优点:用优先级区分紧急程度、重要程度,适用于实时操作系统。可灵活地调整对各种作业/进程的偏好程度。
缺点:若源源不断地有高优先级进程到来,则可能导致饥饿
会发生饥饿
就绪队列未必只有一个,可以按照不同优先级来组织。另外,也可以把优先级高的进程排在更靠近队头的位置
根据优先级是否可以动态改变,可将优先级分为静态优先级和动态优先级两种。静态优先级:创建进程时确定,之后一直不变。动态优先级:创建进程时有一个初始值,之后会根据情况动态地调整优先级。
系统进程优先级高于用户进程,前台进程优先级高于后台进程。操作系统更偏好I/O型进程(或称I/O繁忙型进程)。可以从追求公平、提升资源利用率等角度考虑,如果某进程在就绪队列中等待了很长时间,则可以适当提升其优先级。如果某进程占用处理机运行了很长时间,则可适当降低其优先级。如果发现一个进程频繁地进行I/O操作,则可适当提升其优先级。
多级反馈队列调度算法
该算法是对其他调度算法的折中权衡。
设置多级就绪队列,各级队列优先级从高到低,时间片从小到大。
新进程到达时先进入第1级队列,按FCFS原则排队等待被分配时间片,若用完时间片进程还未结束,则进程进入下一级队列队尾。如果此时已经是在最下级的队列,则重新放回该队列队尾。
只有第k级队列为空时,才会为k+1级队头的进程分配时间片。
用于进程调度
抢占式的算法。在k级队列的进程运行过程中,若更上级的队列(1~k-1级)中进入了一个新进程,则由于新进程处于优先级更高的队列中,因此新进程会抢占处理机,原来运行的进程放回k级队列队尾。
对各类型进程相对公平(FCFS的优点);每个新到达的进程都可以很快就得到响应(RR的优点);短进程只用较少的时间就可完成(SPF的优点);不必实现估计进程的运行时间(避免用户对运行时间作假);可灵活地调整对各类进程的偏好程度,比如CPU密集型进程、I/O密集型进程(拓展:可以将因I/O而阻塞的进程重新放回原队列,这样I/O密型进程就可以保持较高优先级)
会导致饥饿。
最后更新于